Alder-Ene Reaction
Ene Reaction
The four-electron system including an alkene π-bond and an allylic C-H σ-bond can participate in a pericyclic reaction in which the double bond shifts and new C-H and C-C σ-bonds are formed. This allylic system reacts similarly to a diene in a Diels-Alder Reaction, while in this case the other partner is called an enophile, analogous to the dienophile in the Diels-Alder. The Alder-Ene Reaction requires higher temperatures because of the higher activation energy and stereoelectronic requirement of breaking the allylic C-H σ-bond.
The enophile can also be an aldehyde, ketone or imine, in which case β-hydroxy- or β-aminoolefins are obtained. These compounds may be unstable under the reaction conditions, so that at elevated temperature (>400°C) the reverse reaction takes place - the Retro-Ene Reaction.
While mechanistically different, the Ene reaction can produce a result similar to the Prins Reaction.
--------------------------------------------------------------------------------
Mechanism
Also like the Diels-Alder, some Ene Reactions can be catalyzed by Lewis Acids. Lewis-Acid catalyzed Ene Reactions are not necessarily concerted (for example: Iron(III) Chloride Catalysis of the Acetal-Ene Reaction).
--------------------------------------------------------------------------------
Recent Literature
Formaldehyde Encapsulated in Zeolite: A Long-Lived, Highly Activated One-Carbon Electrophile to Carbonyl-Ene Reactions
T. Okachi, M. Onaka, J. Am. Chem. Soc., 2004, 126, 2306-2307.
Ytterbium(III) Triflate/TMSCl: Efficient Catalyst for Imino Ene Reaction
M. Yamanaka, A. Nishida, M. Nakagawa, Org. Lett., 2000, 2, 159-161.
Steric acceleration of an uncatalysed ene reaction at room temperature
N. Choony, P. G. Sammes, G. Smith, R. Ward, Chem. Commun., 2001, 2062-2063.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment